
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, Dec. 2020 4648

Copyright ⓒ 2020 KSII

This work is supported by Basic Science Research Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Science and ICT(No. 2019R1F1A1060044).

http://doi.org/10.3837/tiis.2020.12.002 ISSN : 1976-7277

Energy Efficient and Low-Cost Server
Architecture for Hadoop Storage Appliance

Do Young Choi, Jung Hwan Oh, Ji Kwang Kim, and Seung Eun Lee*

 Department of Electronic Engineering

Seoul National University of Science and Technology

Seoul, Korea

[e-mail: {choidoyoung, ohjunghwan, jikwang.kim, seung.lee}@seoultech.ac.kr]

*Corresponding author: Seung Eun Lee

Received June 10, 2020; revised September 16, 2020; accepted November 28, 2020;

published December 31, 2020

Abstract

This paper proposes the Lempel-Ziv 4(LZ4) compression accelerator optimized for scale-out

servers in data centers. In order to reduce CPU loads caused by compression, we propose an

accelerator solution and implement the accelerator on an Field Programmable Gate

Array(FPGA) as heterogeneous computing. The LZ4 compression hardware accelerator is a

fully pipelined architecture and applies 16 dictionaries to enhance the parallelism for high

throughput compressor. Our hardware accelerator is based on the 20-stage pipeline and

dictionary architecture, highly customized to LZ4 compression algorithm and parallel

hardware implementation. Proposing dictionary architecture allows achieving high throughput

by comparing input sequences in multiple dictionaries simultaneously compared to a single

dictionary. The experimental results provide the high throughput with intensively optimized in

the FPGA. Additionally, we compare our implementation to CPU implementation results of

LZ4 to provide insights on FPGA-based data centers. The proposed accelerator achieves the

compression throughput of 639MB/s with fine parallelism to be deployed into scale-out

servers. This approach enables the low power Intel Atom processor to realize the Hadoop

storage along with the compression accelerator.

Keywords: Hadoop Storage, Hardware Accelerator, Lempel-Ziv 4 Algorithm, Data

Compression

mailto:seung.lee@seoultech.ac.kr

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4649

1. Introduction

Big data processing is getting more important since the advent of technologies such as big

data services, cloud computing, and internet of things (IoT). Distributed computing is widely

used to process the enormous amounts of data, and the Hadoop is an open source framework

that supporting the distributed computing [1, 2]. Based on the scale-out architecture, the

Hadoop processes an enormous amounts of data by clustering numerous servers [3]. The

architecture of Hadoop enables the cluster performance to increase linearly by extending the

number of servers on the distributed computing framework. Also, the distributed computing

based Hadoop system has advantages of data accessibility and security. Nevertheless,

adopting a high-performance CPU to each server causes total cost of ownership (TCO) and

power consumption issues. For those reasons, several studies were researched to address cost

and power issues while improving Hadoop's data processing capabilities. A recent study

adopted the compression hardware accelerator to each server to lessen the burden of CPU [4,

5]. As Hadoop provides Bzip2, Zlib, LZO, Zstandard, Snappy, and LZ4 (Lempel-Ziv 4)

compression algorithms [6], these algorithms can be adopted to the compression hardware

accelerator to lessen the workload of compression operation. By encoding the original data,

the storage capacity and network bandwidth can be improved.

The capacity of Hadoop workload increases linearly as adopting new servers on the cluster.

However, due to the TCO and power issues, there is a limitation of increasing the number of

servers in the Hadoop framework [7, 8]. Although replacing the high-performance processor

with a low-performance processor address the server expansion limitation, this alternative

causes bandwidth and storage performance degradation. Therefore, it is necessary to offload

the burden of compression operations of low performance processor. In this paper, based on

the possibility of LZ4 hardware accelerator, we propose to enhance the performance of hadoop

storage appliance by adopting the low performance processors instead of the

high-performance processor. By using the Intel Atom processor [9] on the Hadoop server, the

power and cost issues can be solved. Furthermore, compression throughput can be improved

by using the LZ4 hardware accelerator. In addition, offloading the workload to the

compression hardware accelerator can enhance the transmission bandwidth and storage space

by compressing the massive amounts of data with high compression throughput.

When implementing the compression hardware accelerator on Hadoop storage server, the

LZ4 is an suitable algorithm compared to other compression algorithms. However, the match

process in LZ4 algorithm still needed to be optimized for hardware implementation. Realizing

LZ4 hash table as software has significantly less limitation in the size of buckets because there

is less memory limitation compared to the hardware implementation. However, implementing

the hash table as hardware has the disadvantage of increasing the hardware resource derived

from the complex hash function and bucket. In addition, there is a compression throughput

issue when the compression hardware accelerator uses only one dictionary, because the match

procedure have to be performed several times in one match procedure. To address these issues,

the LZ4 hardware accelerator exploits an ASCII address based dictionary which reduces the

complexity of hash function. Also, the compression throughput of LZ4 hardware accelerator

can be enhanced by adopting multiple dictionaries in parallel as a way to reduce the overhead

of the match procedure. The contributions of our work in this paper are as follows.

4650 Choi et al.: Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

 Improve the compression throughput and reduce the hardware resource of LZ4

hardware accelerator as customizing the LZ4 compression to hardware

implementation.

 Replace the high-performance processors used for servers with the low-performance

processors and improve the energy, and cost performance of Hadoop framework.

 Offload the burden of compression operations caused by processor replacement to

LZ4 hardware accelerator and address the server extension limitation of Hadoop

framework.

The structure of this paper is organized as follows. Section 2 presents the motivation with

the results of comparison between Intel Atom processor [9] and Intel Xeon processor [10] to

verify the possibilities of adopting Atom processor on Hadoop servers. Section 3 provides the

related work about LZ4 acceleration. Section 4 explains compression algorithms of Hadoop,

LZ4 algorithm, frame format, and dictionary. Section 5 proposes micro-architecture of LZ4

hardware accelerator and the parallel dictionary optimized to the hardware accelerator.

Section 6 provides performance analysis of LZ4 hardware accelerator with high compression

throughput compared to software-based LZ4. Finally, section 7 concludes the paper.

2. Motivation

For large size of web applications, frequent data I/O and random access of huge datasets

occurs in the clusters, but the basic arithmetic operations are hardly peformed. A half of the

TCO of clusters with these workloads is due to power consumption. From 55 to 60 % of power

consumption derives from CPU and memory. Thus, a server with a low-power CPU-based

architecture would be the good option for the clusters with these workloads. Prior to

implement a scale-out server for Hadoop distributed file system, we evaluated the

performance of a high-performance Intel Xeon processor (E5-2609, 2.4 GHz, 4 cores) and

low-power Intel Atom processor (C2758, 2.4Ghz, 8 cores) by performing major functions

such as sequential read/write, compression/decompression and file I/O. Fig. 1 shows the

performance analysis results to inspect the Xeon and Atom processor. In Fig. 1(a), the

processor test repeats the 64bit integer calculations. (A, B) implies that A is the number of

threads in Xeon processor and B is the number of threads in Atom processor. Y-axis implies

the normalized processing time in each analysis. Also, there are light and heavy workloads to

compare the performance by differentiating the number of threads in processors. In the case of

single thread with both workloads, the Xeon is faster than Atom as the Xeon aims to handle

large computational capacities. However, the Atom processor shows the better performance in

multi-threads. File I/O speed is the major factor to enhance the overall performance of Hadoop

clusters. In Fig. 1(b), the analysis result of file I/O speed is quite similar in sequential write and

read process in single thread. In the case of rewrite process, both processors achieves the

acceptable performance with a single thread. However, the Xeon is much faster thanks to

multithreading. In Fig. 1(c), we test compression and decompression speed of the three

compression algorithms, which are exploited in Hadoop including Gzip, Bzip, and Zip.

Atom-based server is 1.6× slower in compression and 2.5× slower in decompression than

Xeon-based server. This result is because the Xeon processor is highly specific to the

successive computational workloads like compression and decompression.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4651

In Hadoop system, the integer calculations are not the main workloads. The Hadoop

framework performs data compression and decompression while data I/O procedure to utilize

the network bandwidth and save storage. Therefore, the compression and decompression are

the most influential factors in to the overall system performance.

According to the processor performance analysis, the usage of Atom processor on Hadoop

storage server guarantees only in terms of the file I/O performance compared to the

conventional Xeon-based server. However, the performance degradation is expected due to

the frequent data compression and decompression whenever the data I/O occurs. Based on the

analysis, we figure out that the Atom-based micro-server requires the acceleration to catch up

with the computation capacities of Xeon-based servers. The offloading is beneficial with large

amounts of computation so that we focus on the compression procedure in Hadoop cluster,

which is the main factor of performance degradation. Therefore, we propose the hardware

accelerator to offload heavy data compression in Hadoop clusters. The Atom-based server can

guarantee the low cost to operate and maintain the storage services.

(a) 64bit integer calculation speed

(c) Compression/Decompression speed

Fig. 1. Performance analysis of Xeon VS. Atom processor

(b) File I/O speed

4652 Choi et al.: Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

3. Related Work

Among the compression algorithms for Hadoop framework, the LZ4 has the highest

compression throughput with a fair compression ratio. And LZ4 is a suitable compression

algorithm for hardware implementation compared to other compression algorithms. Therefore,

Hadoop compression hardware accelerator has advantages of compression throughput and

hardware implementation when LZ4 compression algorithms are realized on the hardware

accelerator.

LZ4 created by Yan Collet is a lossy, dictionary-based, and byte-oriented compression

algorithm [11, 12]. Since the LZ4 is based on LZ77 compression algorithm, dictionary is used

for compression. By using the dictionary, repeating sequence is replaced to token which

consists of offset and match length. Based on these properties, LZ4 algorithm is used not only

in Hadoop framework, but also in variable applications. The LZ4 algorithm is used in

Solid-State Driver(SSD) to improve the storage performance and lifetime [13]. And LZ4 is

also used in forex trading system to improve the transfer logging speed [12].

Although LZ4 compression is already adopted variable applications with high compression

throughput, there is rooms for reforming the LZ4 algorithm to be applied to more applications.

Kwon et al. reduced the memory size and manufacturing costs by optimizing the LZ4

compression algorithm [14]. They modified the scanning window to move 4 bytes, and

induced changes in offset. As a result, they were able to reach the memory performance goal

by not saving the least 2 bits of the offset value. Kim et al. optimized the LZ4 algorithm to fit

the mobile devices for memory performance and power consumption [15]. Instead of adding

headers to LZ4 data format, they improved compression ratio by reducing offset value size.

Also, they optimized the hash computing and reduced hardware resource.

Implementing the compression algorithm on hardware accelerator is a suitable solution for

improving the compression throughput. And several compression algorithms are realized on

hardware accelerator and adopted on multiple applications. Jing et al. proposed the new

lossless compression algorithm named bit-mapping and implemented the bit-mapping

algorithm on hardware accelerator [16]. Qiao et al. implemented the BWT algorithm on Field

Programmable Gate Array (FPGA) for Bzip2 compression [17]. They achieved the 2 times

over fast compression speed compared to software implementation. Du et al. proposed deflate

compression accelerator to improve the disk access efficiency [4]. They designed the deflate

compression accelerator and analysis the performance by using several test tools such as zpipe,

TestDFSIO, and Terasort. By using the compression accelerator, they improved the

compression throughput than software-only solution.

 LZ4 compression algorithm is also being studied in hardware implementation to adopt on

the hardware accelerator. Benes Tomas implemented the LZ4 algorithm on an FPGA and

analysis the compression ratio, throughput, and utilization [18]. Bartik et al. realized the LZ4

on an FPGA. They verified the possibilities of realization on hardware by comparing area,

frequency performance of LZRW (Lempel-Ziv Ross Williams) [19]. Jang et al. improved the

transfer logging speed of the forex trading system by implementation of the LZ4 algorithm on

hardware compression accelerator [12]. However, the study of the LZ4 algorithm to address

the power and cost issues of Hadoop is still needed. Based on our previous works [20, 21], we

aim to address the TCO and cost issues of Hadoop by adopting the LZ4 hardware accelerator

on Atom-based server.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4653

4. Lempel-Ziv 4

4.1 Compression algorithms used in Hadoop

Servers of the Hadoop framework compress the data to reduce the overhead of the data I/O,

which saves storage of server, and improves transmission bandwidth. Hadoop includes Bzip2,

Zlib, LZO, Zstandard, Snappy, and LZ4 compression algorithms, and these algorithms have

different compression performance. Before we design the compression hardware accelerator,

we evaluated the compression performance of these algorithms.

Compression throughput and compression ratio was analyzed to find the right algorithm for

offloading. For performance analysis of compression algorithms, Intel Core i5-4590 CPU @

3.30GHz x 2, 3.8 GiB RAM, Ubuntu 16.04.6 LTS OS was used. And fifteen suitable text files

were used for corpus, which derived from the calgary, canterbury, snappy-master1, and silesia.

There were subtle differences in the performance of compression algorithms depending on the

corpus. Table 1 shows the average of fifteen compression results to measure the overall

compression ratio (original/compressed).

Table 1. Compression results of Hadoop compression algorithms

Compression

algorithm

Original

size (byte)

Compressed

size (byte)

Compression

ratio

Compression throughput (MB/s)

Compression Decompression

LZO 1,061,790 486,971 2.180 27.867 383.400

Zstandard 1,061,790 332,882 3.190 24.267 421.200

Bzip2 1,061,790 281,915 3.766 12.003 35.733

Snappy 1,061,790 636,059 1.669 300.333 1,058.400

Zlib 1,061,790 386,220 2.749 18.609 272.467

LZ4 1,061,790 642,661 1.652 402.800 3,100.200

Bzip2 showed the highest compression ratio with the 3.766. Burrows-Wheeler transform

and Huffman coding may contribute to the positive result of compression ratio. Zstandard with

the value of 3.190 and Zlib with the value of 2.749 showed the highest compression ratio after

Bzip2. LZ4 has the lowest value among the compression algorithm with 1.652 compression

ratio. However, the result of compression/decompression throughput in Table 1 showed the

opposite tendency of compression ratio results. The Bzip2 and Zstandard compression

algorithm, which had a highest compression ratio, recorded the lowest compression

throughput. The LZ4 algorithm showed the highest throughput among the Hadoop

compression algorithms with the value of 402.8 MB/s compression throughput and 3,100.2

MB/s decompression throughput. As shown in Table 1, there is a trade-off between

compression ratio and throughput. Therefore, the compression algorithm adopted in a certain

environment can be changed depending on the application needs. According to the

performance analysis, LZ4 compression algorithm is suitable for hardware accelerators with

the low-power processor. The high compression throughput of LZ4 can reduces the workload

of the server by allowing the server to compress/decompress data faster. Also, hardware

accelerator based on LZ4 has the advantage of hardware resource, because LZ4 compression

algorithm is suitable to implement on hardware compared to other compression algorithms.

Therefore, we adopted the LZ4 algorithm for the compression hardware accelerator in

consideration of the high compression throughput and the advantage of hardware resource.

4654 Choi et al.: Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

4.2 LZ4 compression Algorithm

LZ4 compression algorithm is suitable to implement on a hardware accelerator compared to

other compression algorithms, as LZ4 is based on the dictionary-based compression algorithm.

Algorithm 1. shows the encoding flow of the LZ4 frame. When LZ4 compression starts, the

original sequence is moved to the window in order. LZ4 window includes the part of the

original sequence which is compared with the dictionary. LZ4 window is classified as a

current window, a lookahead window, and a scanning window. The current window contains

the sequence for which compression will be performed, and the lookahead window contains

the sequence to be shifted with the current window when compression of the current window

is completed. The scanning window moves 1 byte from the current window to confirm the

match between the sequence and dictionary. The size of scanning window equals in size to

current window and lookahead window. In LZ4 compression algorithm, the first 4 bytes of

scanning window are used to calculate the hash value to proceed with the match. As LZ4

frame has at least 3 bytes, more than 4 bytes of original sequence have to be compressed.

Because the original sequence less than 4 bytes cannot be reduced by LZ4 compression. Also,

computing the hash value of all the characters of the scanning window may occur calculation

overhead. Therefore, 4 bytes of the scanning window are used to obtain the bucket value

through the hash function, and the bucket is used as the address of the dictionary to perform

the match procedure. When the hash value is not matched, the substring is registered at the

address of the dictionary and the scanning window shifts 1 byte to repeat the above process at

the next position of the current window. On the contrary, when the match is occurred, the

matched length is calculated by backward match as the 4 bytes of the scanning window and

dictionary are containing the same substring. After completing the backward match, the

scanning window is shifted 1 byte to proceed the above process in the new character until the

matched length of all characters in the current window is obtained. After then, based on the

dictionary data which has the longest match length among the all characters of the current

window, LZ4 data block is created by combining offset, compression, and uncompressed

literal of the sequence. Then, the sequence in the lookahead window is shifted to the current

window to create the next block, and the above compression process is repeated. LZ4

compression algorithm has exceptional rules. The match will not proceed, when the original

sequence remains less than 12 characters. Also, last 5 characters in the original sequence will

be left as uncompressed literal.

Algorithm 1. The encoding algorithm of LZ4 frame

Input:
pi : pointer of input data

po : pointer of output data

Output:
bo : buffer of output data

1. initialize pi, po, bo

2. while pi < sizei -12 do

3. din  read_sequence(pi)

4. hin  hash_function(din)

5. hdata  hash_table[hin]

6. hash_table[hin]  din

7. if hdata = din then

8. calculate match_length

9. encode lz4_frame

10. for i  0 to lz4_frame_length – 1 do

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4655

11. bo[po + i]  lz4_frame[i]

12 end
13. pi  pi + match_length

14. po  po + sequence_length

15. else
16. pi  pi +1

17. end
18. end

19. return bo

4.3 LZ4 Framing Format

After compress the original sequences, compressed data is reformed as LZ4 framing format

which reformed according to the presence of flags or compressed data size. As shown in Fig. 2,

the LZ4 framing format consists of a magic number, a frame descriptor, a data block, an

endmark, and a content checksum. The magic number is 4 bytes little endian format and the

value is fixed to 0x184D2204. The frame descriptor has minimum 3 to maximum 15 bytes

data length depending on the optional parameter. Also, the frame descriptor contains a flags, a

content size, and a dictionary ID that set the LZ4 frame format. The data blocks consists of a

compressed data, a block size, and a block checksum. The functions of each part will be

explained later on. When the data block has the 0 value, the part of the data blocks is

terminated and the endmark representing the number of the data block is followed. The

content checksum is the part that verifying the decoded value is correct. The content checksum

is presented when the content checksum flag is asserted. The receiver can verify the

correctness of LZ4 framing format by using the content checksum, and therefore, using the

content checksum is encouraged.

Fig. 2. LZ4 frame format

The structure of the data blocks is shown in Fig. 2. The data block consists of a block size,

a compressed data, and a block checksum. The block size has 4 bytes little endian format, and

the compressed data contains the uncompressed original sequence, when the highest bit is set

to 1. On the contrary, when the highest bit is 0, the compressed data contains compressed

sequence. In addition, the remaining bits in the block size have the size information of the

following data block excepting the block checksum. The Compressed data contains the

compressed data by using LZ4 algorithms, and properties of the compressed data will be

explained later on. The Block checksum is only presented when the block checksum flag that

included in the frame descriptor is set. As in the case of the content checksum, the block

4656 Choi et al.: Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

checksum outputs the checksum value of the raw data block. The checksum is represented as

little endian format.

The compressed data containing compression results of LZ4 algorithm consists of a token,

a literal length, a literal, an offset, and a match length. The Token has a single byte size, and

each upper and lower of 4 bits is classified as literal part and match part according to the

function. The Literal part contains the number of uncompressed character in the window.

When the length of data is more than 15, the more bits are needed to contain the number of

uncompressed characters since the literal part only has 4 bit. In that case, the literal part can

express 255 more length by using the 1 byte literal length part, and there is no limitation to add

the literal length parts. The lower 4 bits of token are match part which represents the number

of compressed characters. As in the case of literal part, match part express up to 15 length and

the match length can be used to express more than 15 length. The literal is the part that

containing the uncompressed data at each data and the literal has little endian format. The

offset part represents the distance between the sequence of compressed data and registered

data in the dictionary. The range of the offset can be restricted to one data block or entire data

blocks according to the block independence flag of the frame descriptor.

4.4 Dictionaries in LZ4 Algorithm

LZ4 has the highest compression throughput among the Lempel-Ziv based algorithms.

Fig. 3 illustrates the encoding process of LZ4 algorithm. In the LZ4 compression, the input

stream is scanned with the window which has 4 byte length and checked whether the substring

was repeated in the input stream before. The LZ4 hash table is used to check the input steram.

LZ4 hash table contains the substrings and indexes. The substring is compared with input

stream and index has the position information of the input stream. When the substring of the

hash table is equal to the current window, it means that the current substring is repeated, as

shown in Fig. 3. In the LZ4, the match is the procedure that finding the repeated string from the

input stream and calculate the total length of the repeated string. The match procedure is

iterated for all the substrings in the LZ4 window and the longest match is calculated. The token

is generated based on the information of longest match. The token (10,7) describes that there

are 10 bytes of uncompressed literals and 7 compressed data bytes. The offset value 9

represents that the literals, matched with previously compressed literals, have been appeared

before the offset value. When the entry doesn’t exist in the hash table, a new entry is added to

the hash table. The window scans and repeats this sequence to the end of the stream. As LZ4

hash table contains the small size bucket without the additional addressing functions, large

size of memory is unnecessary for LZ4 algorithm.

Fig. 3. The flow of generating compressed data

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4657

5. ARCHITECTURE OF THE ACC-LZ4

5.1 Micro-Architecture of ACC-LZ4

The Fig. 4 illustrates the micro-architecture of the ACC-LZ4. The ACC-LZ4 is the hardware

accelerator designed for LZ4 compression algorithm. Our hardware accelerator is composed

of as follows: an allocator, 16 dictionaries, a compare match, a compressed data write, a

manager, a position, and a FSM module. The allocator, including sliding windows, performs

the data allocation to other modules. Then, it allocates sequences to each dictionary. The

dictionaries compare allocated sequence with existing sequence to find out the repeated data

strings. Every dictionary is connected to work signal, which is matched with 1 bit for each

dictionary to control the dictionary separately. We can achieve the parallelism by deploying

the dictionaries as parallel for compression throughput performance. The compare match

module finds the longest match length from each dictionary through 4 compare stages. Then, it

deploys the best compression result. This is the most significant principle in the LZ4

compression algorithm. The compressed data write module builds the LZ4 data frames by

using the compression result, which is matched in compare match module. After then, it is

stored in the output buffer. Therefore, the compressed data write module covers the

uncompressed literals. The uncompressed literals are temporarily saved into the internal buffer

until the occurrence of the match and LZ4 header. For the fine compression ratio, enough

buffer size would be better. However, the buffer size is limited to output the uncompressed

literals for the stall-free architecture.

Fig. 4. Micro-Architecture of ACC-LZ4

The Fig. 5 illustrates the fully pipelined architecture of the proposed hardware accelerator.

The ACC-LZ4 receives 16 bytes of data from its input source every cycle and directs them into

our stall-free latency pipeline. Thanks to the no-stall architecture, our hardware compression

accelerator has (16 bytes×# of cores)/(20 cycles×period) compression throughput. The

proposed architecture is composed of four major functional components: fetch, candidate

match, match selection, and write. The operation of each stage is as follows:

 Fetch: The input sequence is slid into the current window from the lookahead window.

The current window indicates the sequence processed in current iteration and the

lookahead window indicates sequence text processed in next iteration. The parallel

sequence is prepared from the fetch stage while other stages are conducted.

 Candidate match: The parallel sequence is compared with each dictionary for

candidate match, where sixteen match lengths data are calculated.

4658 Choi et al.: Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

 Match selection: The longest match length is found among the sixteen match results to

obtain the best compression ratio. LZ4 frame is encoded by the token, literals, match

length, and offset of the dictionary data which has the best match result.

 Write: The compressed data is fed to the output buffer through the write logic. The

write stage has an extra FSM.

Fig. 5. Pipelined stage of ACC-LZ4

5.2 Parallel Dictionary in the ACC-LZ4

The ACC-LZ4 is based on the parallel dictionary architecture for efficient compression in

hardware implementation. In the LZ4 algorithm, the dictionary finds the first match between

the inside dictionary data and current window data. By using the window for match procedure,

the ACC-LZ4 compresses the length of data up to 31 bytes. The first match process is a major

cause of overhead. Therefore, we designed the dictionaries to reduce the compression time and

to parallelize the LZ4 encoding. The proposed dictionary has a short bucket bit to reduce the

complexity of the hash function. We used ASCII as the hash address, where the first character

of the current window data is used. Thanks to the parallel dictionary, we can achieve the high

compression throughput by exploiting sixteen dictionaries in parallel. When the compression

hardware accelerator is designed with a single dictionary, the compression engine repeats the

match procedure. On the contrary, our compression accelerator simultaneously compares

current window data with 16 dictionaries. Thus, ACC-LZ4 achieves the higher throughput

than a single dictionary-based architecture.

Fig. 6. Parallel dictionaries of ACC-LZ4

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4659

6. Performance Analysis

6.1 Environment

To evaluate the compression performance, we compared the compression throughput between

the software LZ4 and ACC-LZ4 hardware accelerator. We used LZ4 open source code to

evaluate the performance of software-based LZ4. And we set the evaluation environment to

Intel Core i5-4590 CPU @ 3.30GHz x 2, 3.8 GiB RAM, and Ubuntu 16.04.6 LTS OS to

evaluate the software-based LZ4. The ACC-LZ4 has 100 Mhz system clock, and comprises of

eight LZ4 cores. To realize the LZ4 hardware accelerator, the ACC-LZ4 was implemented on

Artix7, Kintex7, Virtex7, and Zynq7000. Also, logic analyzer was used to evaluate the time

between the compression start and termination flag.

6.2 Experimental Dataset

The experimental dataset is selected for comparing the performance of ACC-LZ4 and

software-based LZ4. As the LZ4 is a byte-oriented algorithm, text files are used as corpus. We

selected 15 text files as corpus from calgary, canterbury, silesia, and snappy-master1. The

compression ratio was different as text file, but the results are generally similar.

6.3 Experimental Results

The experiment was conducted to evaluate the compression throughput. In order to compare

the throughput performance between ACC-LZ4 and software-based LZ4, we analyzed the

compression time of each corpus sequence. For the experiment, we intentionally generated the

compression start and compression termination I/O signals on the ACC-LZ4. With the logic

analyzer, we measured the compression time by using the compression start and compression

termination signals. Table 2 shows the compression throughput of software-based LZ4 and

ACC-LZ4. The results show that the different aspects of compression throughput between

software-based LZ4 and ACC-LZ4. When text file is compressed by software-based LZ4,

every compression throughput of corpus is fairly different because iteration can be terminated

irregularly as the software-based LZ4 finds the match with multiple iterations. On the contrary,

the ACC-LZ4 has the fairly constant compression throughput compared to software LZ4,

because 16 parallel dictionaries are used at the match operation. Consequently, software-based

LZ4 has 410MB/s of compression throughput and ACC-LZ4 shows 639MB/s of compression

throughput in average. The ACC-LZ4 has 1.558 times faster compression throughput

compared to software-based LZ4 because the ACC-LZ4 is designed to solve the iteration

overhead issue by using the parallel dictionaries and ASCII hash function.

Table 2. Compression results of software-based LZ4 and ACC-LZ4

Input text
Original

size (byte)

Compressed

size (byte)

Compression

ratio

Compression throughput (MB/s)

Software

based LZ4
ACC-LZ4

alice29.txt 152,089 88,699 1.715 363 640.517

news 377,109 222,770 1.693 426 640.183

asyoulik.txt 125,179 79,653 1.572 372 639.958

bib 111,261 56,688 1.963 406 640.037

book1 768,771 522,806 1.470 344 640.227

book2 610,856 333,498 1.832 366 640.088

lcet10.txt 426,754 233,213 1.830 366 639.524

paper1 53,161 28,933 1.837 399 639.229

4660 Choi et al.: Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

paper2 82,199 47,824 1.719 371 640.086

paper3 46,526 28,294 1.644 363 639.107

plrabn12.txt 481,861 325,589 1.480 347 640.018

random.txt 100,000 100,394 0.996 403 639.427

paper4 13,286 8,471 1.568 574 637.009

paper5 11,954 7,456 1.603 610 636.296

paper6 38,105 20,609 1.849 435 639.611

Average 226,607 140,326 1.651 410 639.421

In order to verify the resource of the ACC-LZ4, we implemented the ACC-LZ4 on the

variable FPGAs. We implemented the ACC-LZ4 on the Virtex7 (XC7VX485TFFG176),

Kintex7 (XC7K325TFFG900), Artix7 (XC7A200TSBG484), and Zynq7000

(XC7Z010CLG400). Table 3 is the utilization results of the ACC-LZ4. The used resources of

the slices, LUTs, and Flip-Flops of each FPGAs are presented on Table 3. Based on the results

of the implementation, we verified that the ACC-LZ4 can be realized on the low-cost FPGA

such as Zynq7000 and it will lessen the workload of server and reduce the cost of the Hadoop

storage. Based on these results, data I/O overhead of Hadoop can be reduced by using the

low-performance processor with ACC-LZ4. Also, we verify that the ACC-LZ4 has higher

compression throughput compared to high-performance processor. This strategy addresses the

power and cost issue of Hadoop by using the low-performance processor with ACC-LZ4.

Table 3. Utilization results of the ACC-LZ4

FPGA Slice LUT Memory Flip-Flop

Virtex7 2,506 (3.30%) 7,099 (2.33%) 896 (0.68%) 2,230 (0.36%)

Kintex7 2,724 (5.34%) 7,155 (3.49%) 896 (1.40%) 2,230 (0.54%)

Artix7 2,488 (7.43%) 7,129 (5.32%) 896 (1.93%) 2,230 (0.83%)

Zynq7000 2,301 (52.29%) 6,883 (39.10%) 908 (15.13%) 2,110 (5.99%)

7. Conclusion

In this paper, we addressed the power and cost issues of Hadoop. We examined these issues

derived from the high-performance processor and proposed the low-performance processor

with the ACC-LZ4 compression hardware accelerator. When realize the ACC-LZ4 hardware

accelerator to adopt on low performance processor, there are still issues of hash function and

compression iteration. The hash function of LZ4 increases hardware resources of the

accelerator, and compression iteration of LZ4 algorithm causes degradation of compression

throughput. Thus, we addressed the hash function issue by reforming the ASCII based hash

function and the iteration issue by adopting parallel dictionaries. The ACC-LZ4 has the

639MB/s compression throughput and has 1.558 times faster compression performance

compared to software-based LZ4. Based on the ACC-LZ4, high-performance processor can be

replaced with low-performance processor by offloading the load of compression operation to

the ACC-LZ4. Consequently, adopting the ACC-LZ4 with low-performance processor

address the TCO and cost issues of Hadoop framework. In the future, we plan to optimize the

hardware resources of ACC-LZ4 and adopt more LZ4 cores on ACC-LZ4 to increase the

compression throughput.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4661

References

[1] D. Park, J. Wang, and Y. S. Kee, “In-Storage Computing for Hadoop MapReduce Framework

Challenges and Possibilities,” IEEE Transaction on Computers, p. 1, July 2016.

Article (CrossRef Link)

[2] N. M. F. Qureshi and D. R. Shin, “RDP: A storage-tier-aware Robust Data Placement strategy for

Hadoop in a Cloud-based Heterogeneous Environment,” KSII Transaction on Internet and

Information Systems, vol. 10, no. 9, Sep. 2016. Article (CrossRef Link)

[3] H. Xu, W. Liu, G. Shu, and J. Li, “LDBAS: Location-aware Data Block Allocation Strategy for

HDFS-based Applications in the Cloud,” KSII Transaction on Internet and Information Systems,

vol. 12, no. 1, Jan. 2018. Article (CrossRef Link)

[4] H. Du, K. Zhang, S. Sha, C. Ye, and Q. Luo, “The Library for Hadoop deflate compression based

on FPGA accelerator with Load Balance,” in Proc. of 2019 20th International Conference on

Parallel and Distributed Computing, Applications and Technologies(PDCAT), pp. 265-270, 2019.

Article (CrossRef Link)

[5] Y. Li, Y. Sun, G. Dai, Y. Wang, K. Ni, Y. Wang, G. Li, and H. Yang, “A Self-aware Data

Compression System on FPGA in Hadoop,” in Proc. of International Conference on Field

Programmable Technology (FPT), pp. 196-199, Dec. 2015. Article (CrossRef Link)

[6] L. H. Xiang, L. Miao, D. F. Zhang, and F. P. Chen, “Benefit of Compression in Hadoop:

A Case Study of Improving IO Performance on Hadoop,” in Proc. of the 6th International Asia

Conference on Industrial Engineering and Management Innovation, pp.879-890, 2016.

Article (CrossRef Link)

[7] S. Ibrahim, D. Moise, H. E. Chihoub, A. Carpen-Amarie, L. Bouge, and G. Antoniu, “Towards

Efficient Power Management in MapReduce: Investigation of CPU-Frequencies Scaling on Power

Efficiency in Hadoop,” in Proc. of International Workshop on Adaptive Resource Management

and Scheduling for Cloud Computing, pp.147-164, 2014. Article (CrossRef Link)

[8] N. Zhu, X. Liu, and Y. Hua, “Towards a cost-efficient MapReduce: Mitigating power peaks for

Hadoop clusters,” Tsinghua Science and Technology, vol. 19, no. 1, pp. 24-32, 2014.

Article (CrossRef Link)

[9] Intel Atom Processor. [Online]. Available: https://www.intel.com/content/www/us/en/produc

ts/processors/atom.html

[10] Intel Xeon Processor. [Online]. Available: https://www.intel.com/content/www/us/en/products

/processors/xeon.html

[11] S. M. Lee, J. H. Oh, J. H. Jang, S. M. Lee, K. Kim, and S. E. Lee, “Live demonstration: An FPGA

based hardware compression accelerator for Hadoop system,” in Proc. of IEEE Asia Pacific

Conference on Circuits and Systems (APCCAS), pp. 744-745, 2016.

Article (CrossRef Link)

[12] J. H. Jang, S. M. Lee, S. D. Kim, S. G. Oh, E. Ko, S. M. Lee, J. W. Shin, and S. E. Lee,

“Accelerating Forex Trading System Through Transaction Log Compression,” in Proc. of

International SoC Design Conference (ISODC), pp. 74-75, 2014. Article (CrossRef Link)

[13] W. Liu, F. Mei, C. Wang, M. O’Neill, and E. E. Swartzlander, “Data Compression Device Based

on Modified LZ4 Algorithm,” IEEE Transactions on Consumer Electronics, vol. 64,

no. 1, pp. 110-117, 2018. Article (CrossRef Link)

[14] S. J. Kwon, S. H. Kim, H. J. Kim, and K. S. Kim, “LZ4m: A fast compression algorithm for

in-memory data,” in Proc. of IEEE International Conference on Consumer Electronics (ICCE),

pp. 420-423, Jan. 2017. Article (CrossRef Link)

https://doi.org/10.1109/TC.2016.2595566
http://dx.doi.org/10.3837/tiis.2016.09.003
http://dx.doi.org/10.3837/tiis.2018.01.010
https://doi.org/10.1109/PDCAT46702.2019.00056
https://doi.org/10.1109/FPT.2015.7393149
https://doi.org/10.1109/FPT.2015.7393149
https://doi.org/10.2991/978-94-6239-148-2_87
https://doi.org/10.1007/978-3-319-13464-2_11
https://doi.org/10.1109/TST.2014.6733205
https://doi.org/10.1109/TST.2014.6733205
https://www.intel.com/content/www/us/en/produc
https://www.intel.com/content/www/us/en/products
https://doi.org/10.1109/APCCAS.2016.7804035
https://doi.org/10.1109/ISOCC.2014.7087602
https://doi.org/10.1109/TCE.2018.2810480
https://doi.org/10.1109/ICCE.2017.7889380
https://doi.org/10.1109/ICCE.2017.7889380

4662 Choi et al.: Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

[15] J. Kim and J. Cho, “Hardware-accelerated Fast Lossless Compression Based on LZ4 Algorithm,”

in Proc. of International Conference on Digital Signal Processing, pp. 65-68, Feb. 2019.

Article (CrossRef Link)

[16] Y. Jing, L. Rong, G. Rui, and X. Ning-Yi “An Efficient Lossless Compression Method for Internet

Search Data in Hardware Accelerators,” WRI World Congress on Computer Science and

Information Engineering, pp. 453-457, Apr. 2009. Article (CrossRef Link)

[17] W. Qiao, Z. Fang, M. C. F. Chang, and J. Cong, “An FPGA-based BWT Accelerator for Bzip2

Data Compression,” in Proc. of IEEE 27th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pp. 1-4, May 2019.

Article (CrossRef Link)

[18] B. Tomas, “High throughput FPGA implementation of LZ4 algorithm,” M.S. thesis. Czech

Technical University, Prague, 2019.

[19] M. Bartik, S. Ubik, and P. Kubalík, “LZ4 compression algorithm on FPGA,” in Proc. of IEEE

International Conference on Electronics, Circuits, and Systems, pp. 179-182, 2015.

Article (CrossRef Link)

[20] S. M. Lee, J. H. Hang, J. H. Oh, J. K. Kim, and S. E. Lee, “Design of Hardware Accelerator for

Lempel-Ziv 4(LZ4) Compression,” IEICE Electronics Express, vol. 14, no. 11, 2017.

Article (CrossRef Link)

[21] S. D. Kim, S. M. Lee, J. H. Jang, J. G. Son, Y. H. Kim, and S. E. Lee, “Compression Accelerator

for Hadoop Appliance,” in Proc. of International Conference on Internet of Vehicles, pp. 416-423,

Sep. 2014. Article (CrossRef Link)

https://doi.org/10.1109/ICCE.2017.7889380
https://doi.org/10.1109/ICCE.2017.7889380
https://doi.org/10.1145/3316551.3316564
https://doi.org/10.1109/CSIE.2009.340
https://doi.org/10.1109/FCCM.2019.00023
https://doi.org/10.1109/ICECS.2015.7440278
https://doi.org/10.1587/elex.14.20170399
https://doi.org/10.1587/elex.14.20170399
https://doi.org/10.1007/978-3-319-11167-4_41

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4663

Do Young Choi received the B.S. degree in Electronic Engineering from the Myongji

University. He is currently a M.S. student in Electronic Engineering in Seoul National

University of Science and Technology. His current research interests include digital

system design, computer architecture, and hardware accelerator for compression.

Jung Hwan Oh received the B.S. and M.S. degree in the Department of Electronic

Engineering at the Seoul National University of Science and Technology, Seoul, Korea, in

2017 and 2019, respectively. He is currently an engineer at division of S.LSI in Samsung

Electronics. His research interests include computer architecture, System-on-Chip design

and hardware multi-core scheduler design.

Ji Kwang Kim received the B.S. and M.S. degree in the Department of Electronic

Engineering at the Seoul National University of Science and Technology, Seoul, Korea, in

2017 and 2019, respectively. He is currently an engineer at division of memory in

Samsung Electronics. His research interests include SoC design and memory controller

architecture.

Seung Eun Lee received the Ph.D. degree in electrical and computer engineering from

the University of California, Irvine (UC Irvine) in 2008 and the B.S. and M.S. degrees in

electrical engineering from the Korea Advanced Institute of Science and Technology

(KAIST), Daejeon in 1998 and 2000, respectively. After graduating, he had been with

Intel Labs., Hillsboro, OR, where he worked as Platform Architect. In 2010, he joined the

faculty of the Seoul National University of Science and Technology, Seoul. His current

research interests include computer architecture, multi-processor system-on-chip,

low-power and resilient VLSI, and hardware acceleration for emerging applications.

