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Abstract 
 

This paper proposes the Lempel-Ziv 4(LZ4) compression accelerator optimized for scale-out 

servers in data centers. In order to reduce CPU loads caused by compression, we propose an 

accelerator solution and implement the accelerator on an Field Programmable Gate 

Array(FPGA) as heterogeneous computing. The LZ4 compression hardware accelerator is a 

fully pipelined architecture and applies 16 dictionaries to enhance the parallelism for high 

throughput compressor. Our hardware accelerator is based on the 20-stage pipeline and 

dictionary architecture, highly customized to LZ4 compression algorithm and parallel 

hardware implementation. Proposing dictionary architecture allows achieving high throughput 

by comparing input sequences in multiple dictionaries simultaneously compared to a single 

dictionary. The experimental results provide the high throughput with intensively optimized in 

the FPGA. Additionally, we compare our implementation to CPU implementation results of 

LZ4 to provide insights on FPGA-based data centers. The proposed accelerator achieves the 

compression throughput of 639MB/s with fine parallelism to be deployed into scale-out 

servers. This approach enables the low power Intel Atom processor to realize the Hadoop 

storage along with the compression accelerator. 
 

Keywords: Hadoop Storage, Hardware Accelerator, Lempel-Ziv 4 Algorithm, Data 

Compression 
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1. Introduction 

Big data processing is getting more important since the advent of technologies such as big 

data services, cloud computing, and internet of things (IoT). Distributed computing is widely 

used to process the enormous amounts of data, and the Hadoop is an open source framework 

that supporting the distributed computing [1, 2]. Based on the scale-out architecture, the 

Hadoop processes an enormous amounts of data by clustering numerous servers [3]. The 

architecture of Hadoop enables the cluster performance to increase linearly by extending the 

number of servers on the distributed computing framework. Also, the distributed computing 

based Hadoop system has advantages of data accessibility and security. Nevertheless, 

adopting a high-performance CPU to each server causes total cost of ownership (TCO) and 

power consumption issues. For those reasons, several studies were researched to address cost 

and power issues while improving Hadoop's data processing capabilities. A recent study 

adopted the compression hardware accelerator to each server to lessen the burden of CPU [4, 

5]. As Hadoop provides Bzip2, Zlib, LZO, Zstandard, Snappy, and LZ4 (Lempel-Ziv 4) 

compression algorithms [6], these algorithms can be adopted to the compression hardware 

accelerator to lessen the workload of compression operation. By encoding the original data, 

the storage capacity and network bandwidth can be improved. 

The capacity of Hadoop workload increases linearly as adopting new servers on the cluster. 

However, due to the TCO and power issues, there is a limitation of increasing the number of 

servers in the Hadoop framework [7, 8]. Although replacing the high-performance processor 

with a low-performance processor address the server expansion limitation, this alternative 

causes bandwidth and storage performance degradation. Therefore, it is necessary to offload 

the burden of compression operations of low performance processor. In this paper, based on 

the possibility of LZ4 hardware accelerator, we propose to enhance the performance of hadoop 

storage appliance by adopting the low performance processors instead of the 

high-performance processor. By using the Intel Atom processor [9] on the Hadoop server, the 

power and cost issues can be solved. Furthermore, compression throughput can be improved 

by using the LZ4 hardware accelerator. In addition, offloading the workload to the 

compression hardware accelerator can enhance the transmission bandwidth and storage space 

by compressing the massive amounts of data with high compression throughput. 

When implementing the compression hardware accelerator on Hadoop storage server, the 

LZ4 is an suitable algorithm compared to other compression algorithms. However, the match 

process in LZ4 algorithm still needed to be optimized for hardware implementation. Realizing 

LZ4 hash table as software has significantly less limitation in the size of buckets because there 

is less memory limitation compared to the hardware implementation. However, implementing 

the hash table as hardware has the disadvantage of increasing the hardware resource derived 

from the complex hash function and bucket. In addition, there is a compression throughput 

issue when the compression hardware accelerator uses only one dictionary, because the match 

procedure have to be performed several times in one match procedure. To address these issues, 

the LZ4 hardware accelerator exploits an ASCII address based dictionary which reduces the 

complexity of hash function. Also, the compression throughput of LZ4 hardware accelerator 

can be enhanced by adopting multiple dictionaries in parallel as a way to reduce the overhead 

of the match procedure. The contributions of our work in this paper are as follows. 
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 Improve the compression throughput and reduce the hardware resource of LZ4 

hardware accelerator as customizing the LZ4 compression to hardware 

implementation. 

 Replace the high-performance processors used for servers with the low-performance 

processors and improve the energy, and cost performance of Hadoop framework. 

 Offload the burden of compression operations caused by processor replacement to 

LZ4 hardware accelerator and address the server extension limitation of Hadoop 

framework. 

The structure of this paper is organized as follows. Section 2 presents the motivation with 

the results of comparison between Intel Atom processor [9] and Intel Xeon processor [10] to 

verify the possibilities of adopting Atom processor on Hadoop servers. Section 3 provides the 

related work about LZ4 acceleration. Section 4 explains compression algorithms of Hadoop, 

LZ4 algorithm, frame format, and dictionary. Section 5 proposes micro-architecture of LZ4 

hardware accelerator and the parallel dictionary optimized to the hardware accelerator. 

Section 6 provides performance analysis of LZ4 hardware accelerator with high compression 

throughput compared to software-based LZ4. Finally, section 7 concludes the paper. 

2. Motivation 

For large size of web applications, frequent data I/O and random access of huge datasets 

occurs in the clusters, but the basic arithmetic operations are hardly peformed. A half of the 

TCO of clusters with these workloads is due to power consumption. From 55 to 60 % of power 

consumption derives from CPU and memory. Thus, a server with a low-power CPU-based 

architecture would be the good option for the clusters with these workloads. Prior to 

implement a scale-out server for Hadoop distributed file system, we evaluated the 

performance of a high-performance Intel Xeon processor (E5-2609, 2.4 GHz, 4 cores) and 

low-power Intel Atom processor (C2758, 2.4Ghz, 8 cores) by performing major functions 

such as sequential read/write, compression/decompression and file I/O. Fig. 1 shows the 

performance analysis results to inspect the Xeon and Atom processor. In Fig. 1(a), the 

processor test repeats the 64bit integer calculations. (A, B) implies that A is the number of 

threads in Xeon processor and B is the number of threads in Atom processor. Y-axis implies 

the normalized processing time in each analysis. Also, there are light and heavy workloads to 

compare the performance by differentiating the number of threads in processors. In the case of 

single thread with both workloads, the Xeon is faster than Atom as the Xeon aims to handle 

large computational capacities. However, the Atom processor shows the better performance in 

multi-threads. File I/O speed is the major factor to enhance the overall performance of Hadoop 

clusters. In Fig. 1(b), the analysis result of file I/O speed is quite similar in sequential write and 

read process in single thread. In the case of rewrite process, both processors achieves the 

acceptable performance with a single thread. However, the Xeon is much faster thanks to 

multithreading. In Fig. 1(c), we test compression and decompression speed of the three 

compression algorithms, which are exploited in Hadoop including Gzip, Bzip, and Zip. 

Atom-based server is 1.6× slower in compression and 2.5× slower in decompression than 

Xeon-based server. This result is because the Xeon processor is highly specific to the 

successive computational workloads like compression and decompression. 
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In Hadoop system, the integer calculations are not the main workloads. The Hadoop 

framework performs data compression and decompression while data I/O procedure to utilize 

the network bandwidth and save storage. Therefore, the compression and decompression are 

the most influential factors in to the overall system performance. 

According to the processor performance analysis, the usage of Atom processor on Hadoop 

storage server guarantees only in terms of the file I/O performance compared to the 

conventional Xeon-based server. However, the performance degradation is expected due to 

the frequent data compression and decompression whenever the data I/O occurs. Based on the 

analysis, we figure out that the Atom-based micro-server requires the acceleration to catch up 

with the computation capacities of Xeon-based servers. The offloading is beneficial with large 

amounts of computation so that we focus on the compression procedure in Hadoop cluster, 

which is the main factor of performance degradation. Therefore, we propose the hardware 

accelerator to offload heavy data compression in Hadoop clusters. The Atom-based server can 

guarantee the low cost to operate and maintain the storage services. 

 

 

 

 

 
(a) 64bit integer calculation speed 

 
(c) Compression/Decompression speed 

 

Fig. 1.  Performance analysis of Xeon VS. Atom processor 

 

 
(b) File I/O speed 
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3. Related Work 

Among the compression algorithms for Hadoop framework, the LZ4 has the highest 

compression throughput with a fair compression ratio. And LZ4 is a suitable compression 

algorithm for hardware implementation compared to other compression algorithms. Therefore, 

Hadoop compression hardware accelerator has advantages of compression throughput and 

hardware implementation when LZ4 compression algorithms are realized on the hardware 

accelerator. 

LZ4 created by Yan Collet is a lossy, dictionary-based, and byte-oriented compression 

algorithm [11, 12]. Since the LZ4 is based on LZ77 compression algorithm, dictionary is used 

for compression. By using the dictionary, repeating sequence is replaced to token which 

consists of offset and match length. Based on these properties, LZ4 algorithm is used not only 

in Hadoop framework, but also in variable applications. The LZ4 algorithm is used in 

Solid-State Driver(SSD) to improve the storage performance and lifetime [13]. And LZ4 is 

also used in forex trading system to improve the transfer logging speed [12]. 

Although LZ4 compression is already adopted variable applications with high compression 

throughput, there is rooms for reforming the LZ4 algorithm to be applied to more applications. 

Kwon et al. reduced the memory size and manufacturing costs by optimizing the LZ4 

compression algorithm [14]. They modified the scanning window to move 4 bytes, and 

induced changes in offset. As a result, they were able to reach the memory performance goal 

by not saving the least 2 bits of the offset value. Kim et al. optimized the LZ4 algorithm to fit 

the mobile devices for memory performance and power consumption [15]. Instead of adding 

headers to LZ4 data format, they improved compression ratio by reducing offset value size. 

Also, they optimized the hash computing and reduced hardware resource. 

Implementing the compression algorithm on hardware accelerator is a suitable solution for 

improving the compression throughput. And several compression algorithms are realized on 

hardware accelerator and adopted on multiple applications. Jing et al. proposed the new 

lossless compression algorithm named bit-mapping and implemented the bit-mapping 

algorithm on hardware accelerator [16]. Qiao et al. implemented the BWT algorithm on Field 

Programmable Gate Array (FPGA) for Bzip2 compression [17]. They achieved the 2 times 

over fast compression speed compared to software implementation. Du et al. proposed deflate 

compression accelerator to improve the disk access efficiency [4]. They designed the deflate 

compression accelerator and analysis the performance by using several test tools such as zpipe, 

TestDFSIO, and Terasort. By using the compression accelerator, they improved the 

compression throughput than software-only solution. 

 LZ4 compression algorithm is also being studied in hardware implementation to adopt on 

the hardware accelerator. Benes Tomas implemented the LZ4 algorithm on an FPGA and 

analysis the compression ratio, throughput, and utilization [18]. Bartik et al. realized the LZ4 

on an FPGA. They verified the possibilities of realization on hardware by comparing area, 

frequency performance of LZRW (Lempel-Ziv Ross Williams) [19]. Jang et al. improved the 

transfer logging speed of the forex trading system by implementation of the LZ4 algorithm on 

hardware compression accelerator [12]. However, the study of the LZ4 algorithm to address 

the power and cost issues of Hadoop is still needed. Based on our previous works [20, 21], we 

aim to address the TCO and cost issues of Hadoop by adopting the LZ4 hardware accelerator 

on Atom-based server. 
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4. Lempel-Ziv 4  

4.1 Compression algorithms used in Hadoop 

Servers of the Hadoop framework compress the data to reduce the overhead of the data I/O, 

which saves storage of server, and improves transmission bandwidth. Hadoop includes Bzip2, 

Zlib, LZO, Zstandard, Snappy, and LZ4 compression algorithms, and these algorithms have 

different compression performance. Before we design the compression hardware accelerator, 

we evaluated the compression performance of these algorithms. 

Compression throughput and compression ratio was analyzed to find the right algorithm for 

offloading. For performance analysis of compression algorithms, Intel Core i5-4590 CPU @ 

3.30GHz x 2, 3.8 GiB RAM, Ubuntu 16.04.6 LTS OS was used. And fifteen suitable text files 

were used for corpus, which derived from the calgary, canterbury, snappy-master1, and silesia. 

There were subtle differences in the performance of compression algorithms depending on the 

corpus. Table 1 shows the average of fifteen compression results to measure the overall 

compression ratio (original/compressed). 

 
Table 1. Compression results of Hadoop compression algorithms 

Compression 

algorithm 

Original 

size (byte) 

Compressed 

size (byte) 

Compression 

ratio 

Compression throughput (MB/s) 

Compression Decompression 

LZO 1,061,790  486,971  2.180 27.867  383.400  

Zstandard 1,061,790  332,882  3.190 24.267  421.200 

Bzip2 1,061,790  281,915  3.766 12.003  35.733  

Snappy 1,061,790  636,059  1.669 300.333  1,058.400  

Zlib 1,061,790  386,220  2.749 18.609  272.467  

LZ4 1,061,790  642,661  1.652 402.800  3,100.200  

 

Bzip2 showed the highest compression ratio with the 3.766. Burrows-Wheeler transform 

and Huffman coding may contribute to the positive result of compression ratio. Zstandard with 

the value of 3.190 and Zlib with the value of 2.749 showed the highest compression ratio after 

Bzip2. LZ4 has the lowest value among the compression algorithm with 1.652 compression 

ratio. However, the result of compression/decompression throughput in Table 1 showed the 

opposite tendency of compression ratio results. The Bzip2 and Zstandard compression 

algorithm, which had a highest compression ratio, recorded the lowest compression 

throughput. The LZ4 algorithm showed the highest throughput among the Hadoop 

compression algorithms with the value of 402.8 MB/s compression throughput and 3,100.2 

MB/s decompression throughput. As shown in Table 1, there is a trade-off between 

compression ratio and throughput. Therefore, the compression algorithm adopted in a certain 

environment can be changed depending on the application needs. According to the 

performance analysis, LZ4 compression algorithm is suitable for hardware accelerators with 

the low-power processor. The high compression throughput of LZ4 can reduces the workload 

of the server by allowing the server to compress/decompress data faster. Also, hardware 

accelerator based on LZ4 has the advantage of hardware resource, because LZ4 compression 

algorithm is suitable to implement on hardware compared to other compression algorithms. 

Therefore, we adopted the LZ4 algorithm for the compression hardware accelerator in 

consideration of the high compression throughput and the advantage of hardware resource. 
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4.2 LZ4 compression Algorithm 

LZ4 compression algorithm is suitable to implement on a hardware accelerator compared to 

other compression algorithms, as LZ4 is based on the dictionary-based compression algorithm. 

Algorithm 1. shows the encoding flow of the LZ4 frame. When LZ4 compression starts, the 

original sequence is moved to the window in order. LZ4 window includes the part of the 

original sequence which is compared with the dictionary. LZ4 window is classified as a 

current window, a lookahead window, and a scanning window. The current window contains 

the sequence for which compression will be performed, and the lookahead window contains 

the sequence to be shifted with the current window when compression of the current window 

is completed. The scanning window moves 1 byte from the current window to confirm the 

match between the sequence and dictionary. The size of scanning window equals in size to 

current window and lookahead window. In LZ4 compression algorithm, the first 4 bytes of 

scanning window are used to calculate the hash value to proceed with the match. As LZ4 

frame has at least 3 bytes, more than 4 bytes of original sequence have to be compressed. 

Because the original sequence less than 4 bytes cannot be reduced by LZ4 compression. Also, 

computing the hash value of all the characters of the scanning window may occur calculation 

overhead. Therefore, 4 bytes of the scanning window are used to obtain the bucket value 

through the hash function, and the bucket is used as the address of the dictionary to perform 

the match procedure. When the hash value is not matched, the substring is registered at the 

address of the dictionary and the scanning window shifts 1 byte to repeat the above process at 

the next position of the current window. On the contrary, when the match is occurred, the 

matched length is calculated by backward match as the 4 bytes of the scanning window and 

dictionary are containing the same substring. After completing the backward match, the 

scanning window is shifted 1 byte to proceed the above process in the new character until the 

matched length of all characters in the current window is obtained. After then, based on the 

dictionary data which has the longest match length among the all characters of the current 

window, LZ4 data block is created by combining offset, compression, and uncompressed 

literal of the sequence. Then, the sequence in the lookahead window is shifted to the current 

window to create the next block, and the above compression process is repeated. LZ4 

compression algorithm has exceptional rules. The match will not proceed, when the original 

sequence remains less than 12 characters. Also, last 5 characters in the original sequence will 

be left as uncompressed literal. 

 

Algorithm 1. The encoding algorithm of LZ4 frame 

Input: 
pi : pointer of input data 

po : pointer of output data 

Output: 
bo : buffer of output data 

1. initialize pi, po, bo 

2. while pi < sizei -12 do 

3.  din  read_sequence(pi) 

4.  hin  hash_function(din) 

5.  hdata  hash_table[hin] 

6.  hash_table[hin]  din 

7.  if hdata = din then 

8.   calculate match_length 

9.   encode lz4_frame 

10.   for i  0 to lz4_frame_length – 1 do 
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11.    bo[po + i]  lz4_frame[i] 

12   end 
13.   pi  pi + match_length 

14.   po  po + sequence_length 

15.  else 
16.   pi  pi +1 

17.  end 
18. end 

19. return bo 

4.3 LZ4 Framing Format 

After compress the original sequences, compressed data is reformed as LZ4 framing format 

which reformed according to the presence of flags or compressed data size. As shown in Fig. 2, 

the LZ4 framing format consists of a magic number, a frame descriptor, a data block, an 

endmark, and a content checksum. The magic number is 4 bytes little endian format and the 

value is fixed to 0x184D2204. The frame descriptor has minimum 3 to maximum 15 bytes 

data length depending on the optional parameter. Also, the frame descriptor contains a flags, a 

content size, and a dictionary ID that set the LZ4 frame format. The data blocks consists of a 

compressed data, a block size, and a block checksum. The functions of each part will be 

explained later on. When the data block has the 0 value, the part of the data blocks is 

terminated and the endmark representing the number of the data block is followed. The 

content checksum is the part that verifying the decoded value is correct. The content checksum 

is presented when the content checksum flag is asserted. The receiver can verify the 

correctness of LZ4 framing format by using the content checksum, and therefore, using the 

content checksum is encouraged. 

 

 
Fig. 2.  LZ4 frame format 

 

The structure of the data blocks is shown in Fig. 2. The data block consists of a block size, 

a compressed data, and a block checksum. The block size has 4 bytes little endian format, and 

the compressed data contains the uncompressed original sequence, when the highest bit is set 

to 1. On the contrary, when the highest bit is 0, the compressed data contains compressed 

sequence. In addition, the remaining bits in the block size have the size information of the 

following data block excepting the block checksum. The Compressed data contains the 

compressed data by using LZ4 algorithms, and properties of the compressed data will be 

explained later on. The Block checksum is only presented when the block checksum flag that 

included in the frame descriptor is set. As in the case of the content checksum, the block 
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checksum outputs the checksum value of the raw data block. The checksum is represented as 

little endian format. 

The compressed data containing compression results of LZ4 algorithm consists of a token, 

a literal length, a literal, an offset, and a match length. The Token has a single byte size, and 

each upper and lower of 4 bits is classified as literal part and match part according to the 

function. The Literal part contains the number of uncompressed character in the window. 

When the length of data is more than 15, the more bits are needed to contain the number of 

uncompressed characters since the literal part only has 4 bit. In that case, the literal part can 

express 255 more length by using the 1 byte literal length part, and there is no limitation to add 

the literal length parts. The lower 4 bits of token are match part which represents the number 

of compressed characters. As in the case of literal part, match part express up to 15 length and 

the match length can be used to express more than 15 length. The literal is the part that 

containing the uncompressed data at each data and the literal has little endian format. The 

offset part represents the distance between the sequence of compressed data and registered 

data in the dictionary. The range of the offset can be restricted to one data block or entire data 

blocks according to the block independence flag of the frame descriptor. 

4.4 Dictionaries in LZ4 Algorithm 

LZ4 has the highest compression throughput among the Lempel-Ziv based algorithms.  

Fig. 3 illustrates the encoding process of LZ4 algorithm. In the LZ4 compression, the input 

stream is scanned with the window which has 4 byte length and checked whether the substring 

was repeated in the input stream before. The LZ4 hash table is used to check the input steram. 

LZ4 hash table contains the substrings and indexes. The substring is compared with input 

stream and index has the position information of the input stream. When the substring of the 

hash table is equal to the current window, it means that the current substring is repeated, as 

shown in Fig. 3. In the LZ4, the match is the procedure that finding the repeated string from the 

input stream and calculate the total length of the repeated string. The match procedure is 

iterated for all the substrings in the LZ4 window and the longest match is calculated. The token 

is generated based on the information of longest match. The token (10,7) describes that there 

are 10 bytes of uncompressed literals and 7 compressed data bytes. The offset value 9 

represents that the literals, matched with previously compressed literals, have been appeared 

before the offset value. When the entry doesn’t exist in the hash table, a new entry is added to 

the hash table. The window scans and repeats this sequence to the end of the stream. As LZ4 

hash table contains the small size bucket without the additional addressing functions, large 

size of memory is unnecessary for LZ4 algorithm. 

 

 
Fig. 3.  The flow of generating compressed data  
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5. ARCHITECTURE OF THE ACC-LZ4 

5.1 Micro-Architecture of ACC-LZ4 

The Fig. 4 illustrates the micro-architecture of the ACC-LZ4. The ACC-LZ4 is the hardware 

accelerator designed for LZ4 compression algorithm. Our hardware accelerator is composed 

of as follows: an allocator, 16 dictionaries, a compare match, a compressed data write, a 

manager, a position, and a FSM module. The allocator, including sliding windows, performs 

the data allocation to other modules. Then, it allocates sequences to each dictionary. The 

dictionaries compare allocated sequence with existing sequence to find out the repeated data 

strings. Every dictionary is connected to work signal, which is matched with 1 bit for each 

dictionary to control the dictionary separately. We can achieve the parallelism by deploying 

the dictionaries as parallel for compression throughput performance. The compare match 

module finds the longest match length from each dictionary through 4 compare stages. Then, it 

deploys the best compression result. This is the most significant principle in the LZ4 

compression algorithm. The compressed data write module builds the LZ4 data frames by 

using the compression result, which is matched in compare match module. After then, it is 

stored in the output buffer. Therefore, the compressed data write module covers the 

uncompressed literals. The uncompressed literals are temporarily saved into the internal buffer 

until the occurrence of the match and LZ4 header. For the fine compression ratio, enough 

buffer size would be better. However, the buffer size is limited to output the uncompressed 

literals for the stall-free architecture. 

 

 
Fig. 4.  Micro-Architecture of ACC-LZ4 

 

The Fig. 5 illustrates the fully pipelined architecture of the proposed hardware accelerator. 

The ACC-LZ4 receives 16 bytes of data from its input source every cycle and directs them into 

our stall-free latency pipeline. Thanks to the no-stall architecture, our hardware compression 

accelerator has (16 bytes×# of cores)/(20 cycles×period) compression throughput. The 

proposed architecture is composed of four major functional components: fetch, candidate 

match, match selection, and write. The operation of each stage is as follows: 

 Fetch: The input sequence is slid into the current window from the lookahead window. 

The current window indicates the sequence processed in current iteration and the 

lookahead window indicates sequence text processed in next iteration. The parallel 

sequence is prepared from the fetch stage while other stages are conducted. 

 Candidate match: The parallel sequence is compared with each dictionary for 

candidate match, where sixteen match lengths data are calculated. 
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 Match selection: The longest match length is found among the sixteen match results to 

obtain the best compression ratio. LZ4 frame is encoded by the token, literals, match 

length, and offset of the dictionary data which has the best match result. 

 Write: The compressed data is fed to the output buffer through the write logic. The 

write stage has an extra FSM. 

 

 
Fig. 5.  Pipelined stage of ACC-LZ4 

5.2 Parallel Dictionary in the ACC-LZ4 

The ACC-LZ4 is based on the parallel dictionary architecture for efficient compression in 

hardware implementation. In the LZ4 algorithm, the dictionary finds the first match between 

the inside dictionary data and current window data. By using the window for match procedure, 

the ACC-LZ4 compresses the length of data up to 31 bytes. The first match process is a major 

cause of overhead. Therefore, we designed the dictionaries to reduce the compression time and 

to parallelize the LZ4 encoding. The proposed dictionary has a short bucket bit to reduce the 

complexity of the hash function. We used ASCII as the hash address, where the first character 

of the current window data is used. Thanks to the parallel dictionary, we can achieve the high 

compression throughput by exploiting sixteen dictionaries in parallel. When the compression 

hardware accelerator is designed with a single dictionary, the compression engine repeats the 

match procedure. On the contrary, our compression accelerator simultaneously compares 

current window data with 16 dictionaries. Thus, ACC-LZ4 achieves the higher throughput 

than a single dictionary-based architecture. 

 

 
Fig. 6.  Parallel dictionaries of ACC-LZ4 
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6. Performance Analysis 

6.1 Environment 

To evaluate the compression performance, we compared the compression throughput between 

the software LZ4 and ACC-LZ4 hardware accelerator. We used LZ4 open source code to 

evaluate the performance of software-based LZ4. And we set the evaluation environment to 

Intel Core i5-4590 CPU @ 3.30GHz x 2, 3.8 GiB RAM, and Ubuntu 16.04.6 LTS OS to 

evaluate the software-based LZ4. The ACC-LZ4 has 100 Mhz system clock, and comprises of 

eight LZ4 cores. To realize the LZ4 hardware accelerator, the ACC-LZ4 was implemented on 

Artix7, Kintex7, Virtex7, and Zynq7000. Also, logic analyzer was used to evaluate the time 

between the compression start and termination flag. 

6.2 Experimental Dataset 

The experimental dataset is selected for comparing the performance of ACC-LZ4 and 

software-based LZ4. As the LZ4 is a byte-oriented algorithm, text files are used as corpus. We 

selected 15 text files as corpus from calgary, canterbury, silesia, and snappy-master1. The 

compression ratio was different as text file, but the results are generally similar. 

6.3 Experimental Results 

The experiment was conducted to evaluate the compression throughput. In order to compare 

the throughput performance between ACC-LZ4 and software-based LZ4, we analyzed the 

compression time of each corpus sequence. For the experiment, we intentionally generated the 

compression start and compression termination I/O signals on the ACC-LZ4. With the logic 

analyzer, we measured the compression time by using the compression start and compression 

termination signals. Table 2 shows the compression throughput of software-based LZ4 and 

ACC-LZ4. The results show that the different aspects of compression throughput between 

software-based LZ4 and ACC-LZ4. When text file is compressed by software-based LZ4, 

every compression throughput of corpus is fairly different because iteration can be terminated 

irregularly as the software-based LZ4 finds the match with multiple iterations. On the contrary, 

the ACC-LZ4 has the fairly constant compression throughput compared to software LZ4, 

because 16 parallel dictionaries are used at the match operation. Consequently, software-based 

LZ4 has 410MB/s of compression throughput and ACC-LZ4 shows 639MB/s of compression 

throughput in average. The ACC-LZ4 has 1.558 times faster compression throughput 

compared to software-based LZ4 because the ACC-LZ4 is designed to solve the iteration 

overhead issue by using the parallel dictionaries and ASCII hash function. 

 
Table 2. Compression results of software-based LZ4 and ACC-LZ4 

Input text 
Original  

size (byte) 

Compressed 

size (byte) 

Compression 

ratio 

Compression throughput (MB/s) 

Software 

based LZ4 
ACC-LZ4 

alice29.txt 152,089 88,699 1.715 363 640.517 

news 377,109 222,770 1.693 426 640.183 

asyoulik.txt 125,179 79,653 1.572 372 639.958 

bib 111,261 56,688 1.963 406 640.037 

book1 768,771 522,806 1.470 344 640.227 

book2 610,856 333,498 1.832 366 640.088 

lcet10.txt 426,754 233,213 1.830 366 639.524 

paper1 53,161 28,933 1.837 399 639.229 
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paper2 82,199 47,824 1.719 371 640.086 

paper3 46,526 28,294 1.644 363 639.107 

plrabn12.txt 481,861 325,589 1.480 347 640.018 

random.txt 100,000 100,394 0.996 403 639.427 

paper4 13,286 8,471 1.568 574 637.009 

paper5 11,954 7,456 1.603 610 636.296 

paper6 38,105 20,609 1.849 435 639.611 

Average 226,607 140,326 1.651 410 639.421 

 

In order to verify the resource of the ACC-LZ4, we implemented the ACC-LZ4 on the 

variable FPGAs. We implemented the ACC-LZ4 on the Virtex7 (XC7VX485TFFG176), 

Kintex7 (XC7K325TFFG900), Artix7 (XC7A200TSBG484), and Zynq7000 

(XC7Z010CLG400). Table 3 is the utilization results of the ACC-LZ4. The used resources of 

the slices, LUTs, and Flip-Flops of each FPGAs are presented on Table 3. Based on the results 

of the implementation, we verified that the ACC-LZ4 can be realized on the low-cost FPGA 

such as Zynq7000 and it will lessen the workload of server and reduce the cost of the Hadoop 

storage. Based on these results, data I/O overhead of Hadoop can be reduced by using the 

low-performance processor with ACC-LZ4. Also, we verify that the ACC-LZ4 has higher 

compression throughput compared to high-performance processor. This strategy addresses the 

power and cost issue of Hadoop by using the low-performance processor with ACC-LZ4. 

 
Table 3. Utilization results of the ACC-LZ4 

FPGA Slice LUT Memory Flip-Flop 

Virtex7 2,506 (3.30%) 7,099 (2.33%) 896 (0.68%) 2,230 (0.36%) 

Kintex7 2,724 (5.34%) 7,155 (3.49%) 896 (1.40%) 2,230 (0.54%) 

Artix7 2,488 (7.43%) 7,129 (5.32%) 896 (1.93%) 2,230 (0.83%) 

Zynq7000 2,301 (52.29%) 6,883 (39.10%) 908 (15.13%) 2,110 (5.99%) 

7. Conclusion 

In this paper, we addressed the power and cost issues of Hadoop. We examined these issues 

derived from the high-performance processor and proposed the low-performance processor 

with the ACC-LZ4 compression hardware accelerator. When realize the ACC-LZ4 hardware 

accelerator to adopt on low performance processor, there are still issues of hash function and 

compression iteration. The hash function of LZ4 increases hardware resources of the 

accelerator, and compression iteration of LZ4 algorithm causes degradation of compression 

throughput. Thus, we addressed the hash function issue by reforming the ASCII based hash 

function and the iteration issue by adopting parallel dictionaries. The ACC-LZ4 has the 

639MB/s compression throughput and has 1.558 times faster compression performance 

compared to software-based LZ4. Based on the ACC-LZ4, high-performance processor can be 

replaced with low-performance processor by offloading the load of compression operation to 

the ACC-LZ4. Consequently, adopting the ACC-LZ4 with low-performance processor 

address the TCO and cost issues of Hadoop framework. In the future, we plan to optimize the 

hardware resources of ACC-LZ4 and adopt more LZ4 cores on ACC-LZ4 to increase the 

compression throughput. 
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